Theory and Simulation of Magnetohydrodynamic Dynamos and Faraday Rotation for Plasmas of General Composition
نویسندگان
چکیده
Many astrophysical phenomena depend on the underlying dynamics of magnetic fields. The observations of accretion disks and their jets, stellar coronae, and the solar corona are all best explained by models where magnetic fields play a central role. Understanding these phenomena requires studying the basic physics of magnetic field generation, magnetic energy transfer into radiating particles, angular momentum transport, and the observational implications of these processes. Each of these topics comprises a large enterprise of research. However, more practically speaking, the nonlinearity in large scale dynamo is known to be determined by magnetic helicity(⟨A · B⟩), the topological linked number of knotted magnetic field. Magnetic helicity, which is also observed in solar physics, has become an important tool for observational and theoretical study. The first part of my work addresses one aspect of the observational implications of magnetic fields, namely Faraday rotation. It is shown that plasma composition affects the interpretation of Faraday rotation measurements of the field, and in turn how this can be used to help constrain unknown plasma composition. The results are applied to observations of astrophysical jets. The thesis then focuses on the evolution of magnetic fields. In particular, the dynamo amplification of large scale magnetic fields is studied with an emphasis on the basic physics using both numerical simulations and analytic methods. In
منابع مشابه
Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence
Related Articles Plasma transport induced by kinetic Alfvén wave turbulence Phys. Plasmas 19, 102305 (2012) Resistive and ferritic-wall plasma dynamos in a sphere Phys. Plasmas 19, 104501 (2012) ELMy H-mode linear simulation with 3-field model on experimental advanced superconducting tokamak using BOUT++ Phys. Plasmas 19, 102502 (2012) Control of ion density distribution by magnetic traps for p...
متن کاملEffect of Plasma Composition on the Interpretation of Faraday Rotation
Faraday rotation (FR) is widely used to infer the orientation and strength of magnetic fields in astrophysical plasmas. Although the absence of electron-positron pairs is a plausible assumption in many astrophysical environments, the magnetospheres of pulsars and black holes and their associated jets may involve a significant pair plasma fraction. This motivates being mindful of the effect of p...
متن کاملLow-order stellar dynamo models
Stellar magnetic activity – which has been observed in a diverse set of stars including the Sun – originates via a magnetohydrodynamic dynamo mechanism working in stellar interiors. The full set of magnetohydrodynamic equations governing stellar dynamos is highly complex, and so direct numerical simulation is currently out of reach computationally. An understanding of the bifurcation structure,...
متن کاملMagnetic fields in Planetary Nebulae Paradigms and Related MHD Frontiers
Many, if not all, post AGB stellar systems swiftly transition from a spherical to a powerful aspherical pre-planetary nebula (pPNE) outflow phase before waning into a PNe. The pPNe outflows require engine rotational energy and a mechanism to extract this energy into collimated outflows. Just radiation and rotation are insufficient but a symbiosis between rotation, differential rotation and larg...
متن کاملGlobal rotation limits on dynamo action in shear-free Bianchi type-IX cosmology
Magnetic curvature effects in general relativistic (GR) open Friedmann universe, have been investigated by Barrow and Tsagas (BT) [Phys Rev D 77,(2008)]. This mechanism induces a magnetic field decay. In this report, one shows that, using the GR-(3+1)space-time magnetohydrodynamic (MHD) induction equation derived by Marklund and Clarkson (CM) [MNRAS (2004)], yields two examples of GR cosmologic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013